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Highlights 

 Branch, bound and remember algorithm is improved for two-sided assembly lines.  

 Modified Hoffman heuristic is first applied to achieve a high-quality upper bound.  

 New dominance rules and lower bounds are developed for state-of-the-art results.  

 Proposed methods outperform the current best exact method and metaheuristic. 

 Optimal solutions are achieved for all the benchmarks tested.  
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Abstract: This research presents a new branch, bound and remember (BBR) algorithm to 

minimize the number of mated-stations in two-sided assembly lines. The proposed 

methodology modifies the Hoffman heuristic to achieve high-quality upper bounds, and 

employs two new dominance rules, referred to as memory-based maximal load rule and 

memory-based extended Jackson rule, to prune the sub-problems. The BBR algorithm also 

employs several other improvements to enhance the performance, including renumbering the 

tasks and new lower bounds. Computational results demonstrate that BBR achieves the 

optimal solutions for all the tested instances within 1.0 second on average, including two 

optimal solutions for the first time. Comparative study shows that BBR outperforms the 

current best exact method (branch and bound algorithm) and the current best heuristic 

algorithm (iterated greedy search algorithm). As a consequence, the proposed BBR can be 

regarded as the state-of-the-art method for TALBP.  

Keywords: Combinatorial optimization; Assembly line balancing; Two-sided assembly line; 

Branch and bound; Branch, bound and remember 

 

                  



 

 

Graphical Abstract 

 

6 8

7 9

(4,L) (4,E)

(7,E) (5,R)

0

1

6L

...7L

...

7R

2

...

7L

7R

3

5

7

8R

8L

9R

49R

69R

8

9

8L

8R

 

 

 

0 1818018

Right

Left side

0
Mated-station 1 Mated-station 2 Mated-station 3

1 3 4

2 5

6 8 11

7 9 10

12 14 15

13 16

Left 

 
 

  

                  



 

1. Introduction 

Assembly lines are intensively utilized in mass production due to higher production 

efficiency. An assembly line constitutes a set of connected workstations, and the assembly 

tasks are divided and operated by the workers on workstations (Michels, Lopes, Sikora, & 

Magatão, 2019; Mosadegh, Fatemi Ghomi, & Süer, 2020). As a variant of the simple 

assembly line, two-sided assembly lines are built to assemble large-size products, e.g. cars, 

trucks and motorcycles (Bartholdi, 1993). A two-sided assembly line comprises a set of 

mated-stations, and there are two facing workstations or two sides inside one mated-station. 

Two workers allocated to the two facing workstations operate the tasks in parallel. To 

improve the assembly efficiency, two-sided assembly line balancing problem (TALBP) 

attracts increasing attention from both academics and practitioners (Abdullah Make, Ab. 

Rashid, & Razali, 2017).  

1.1 Related work 

The applied methodologies for TALBP can be categorized into three types: exact methods, 

heuristic methods and metaheuristic methods (Li, Kucukkoc, & Nilakantan, 2017). The 

researches on metaheuristic methods comprise of the majority of the published researches. 

These metaheuristics include genetic algorithms (Delice, Kızılkaya Aydoğan, & Özcan, 2016; 

Kim, Kim, & Kim, 2000; Kim, Song, & Kim, 2009; Kucukkoc & Zhang, 2015a), ant colony 

optimization algorithms (Baykasoglu & Dereli, 2008; Kucukkoc & Zhang, 2015b; Simaria & 

Vilarinho, 2009), tabu search algorithms (Özcan, Gökçen, & Toklu, 2010; Özcan & Toklu, 

2008), simulated annealing algorithms (Khorasanian, Hejazi, & Moslehi, 2013; Özcan & 

                  



Toklu, 2009), particle swarm optimization algorithms (Chutima & Chimklai, 2012; Delice, 

Kızılkaya Aydoğan, Özcan, & İlkay, 2017), bee algorithms and artificial bee colony 

algorithms (Tang, Li, & Zhang, 2016; Tapkan, Özbakır, & Baykasoğlu, 2016; Özbakır & 

Tapkan, 2011), iterated greedy search (IG) algorithms (Li, Tang, & Zhang, 2016; Li, Tang, & 

Zhang, 2017), and artificial fish swarm optimization algorithm (Zhong, Deng, & Xu, 2019), 

to cite just a few. Among these methods, IG algorithm produces the state-of-the-art results for 

TALBP when utilizing the best combination of encoding, decoding and objective function (Li, 

Kucukkoc, et al., 2017). A detailed comparative study of these metaheuristics refers to a 

recent comprehensive review paper by Li, Kucukkoc, et al. (2017). With regard to exact 

methods, Hu, Wu, et al. (2008) introduce a station-oriented enumerative algorithm to address 

small-size instances. Wu, Jin et al. (2008) employ a branch and bound (B&B) algorithm 

where the instances with up to 148 tasks are solved optimally. Xiaofeng, Erfei, et al. (2010) 

also employ a B&B algorithm where the largest-size instances with 205 tasks are solved. 

Nevertheless, this method might consume a large amount of running time, and the optimal 

solutions of the two cases are not achieved.  

Regarding the exact methods, there are many exact methods on the simple assembly line 

balancing problem (SALBP) (Johnson, 1988; Morrison, Sewell, & Jacobson, 2014; Nourie & 

Venta, 1991; Pape, 2015; Scholl & Klein, 1997, 1999; Sewell & Jacobson, 2012; Vilà & 

Pereira, 2013), to cite just a few. Among these methods, the branch, bound and remember 

(BBR) algorithm (Morrison et al., 2014; Sewell & Jacobson, 2012) might be regarded as the 

state-of-the-art method as it solves all the well-known Scholl’s 269 instances optimally within 

very short running time. Due to the effectiveness of the BBR method, they have been 

                  



extended to the variants of SALBP, including U-shaped assembly line balancing problem (Li, 

Kucukkoc, & Zhang, 2018; Yolmeh & Salehi, 2017), robust assembly line balancing problem 

(Pereira & Álvarez-Miranda, 2018), assembly line worker assignment and balancing problem 

(Pereira, 2018; Vilà & Pereira, 2014) and robotic assembly line balancing problem (Borba, 

Ritt, & Miralles, 2018), among others.  

Among the aforementioned literature, there are only three papers working on exact methods 

for TALBP. However, only one is capable of addressing the largest-size instances with the 

cost of a large amount of running time. Furthermore, there is no research to extend and 

improve the BBR to address TALBP.  

1.2 Contributions of the work 

This research focuses on developing new exact methods to produce better results for TALBP. 

Specifically, this research extends and improves the BBR to solve TALBP with the objective 

of minimizing mated-station number. As will be presented in Section 2, the task sequence 

within one station does not matter as long as the precedence constraint is satisfied for SALBP. 

For TALBP, on the contrary, a different task sequence might result in different idle times. 

Thus, the task sequence within one station must be optimized. Moreover, direction constraints 

make the TALBP even more complicated, and hence the published exact methods for SALBP 

cannot solve the considered problem with minor modifications. 

The proposed BBR method employs a modified Hoffman heuristic to construct a high-quality 

upper bound and cyclic best-first search strategy (CBFS) in the search process. As the TALBP 

is greatly different from SALBP due to the sequence-induced idle times and direction 

constraints, this proposed BBR utilizes an improved task enumeration procedure, new 

                  



dominance rules and new lower bounds. This is the first time to apply Hoffman heuristic and 

BBR algorithm to TALBP. The computational study demonstrates the superiority of these 

improvements and shows that proposed BBR outperforms the B&B algorithm (Xiaofeng et 

al., 2010) and IG algorithm (which might be the current best heuristic algorithm (Li, 

Kucukkoc, et al., 2017)), by achieving more optimal solutions or consuming less 

computational time.  

The remainder of this research is organized as follows. Section 2 describes the considered 

TALBP and Section 3 provides a detailed description of the proposed BBR methodology. 

Subsequently, the computational study is conducted in Section 4, where the proposed method 

is evaluated. Finally, the conclusions and several future research venues are presented in 

Section 5.   

2. Problem description 

TALBP can be, without loss of generality, described as a set of tasks 𝐼 (𝐼 = *1,2, … , 𝑖, … , 𝑛𝑡+) 

are allocated to a set of mated-stations   𝐽  (𝐽 = *1,2, … , 𝑗, … , 𝑛𝑚+) with one or several 

optimization criteria. There are three types of essential constraints needed to be considered: 

precedence constraint, cycle time constraint and direction constraint. Figure 1 and Fig. 2 

illustrate an example taken from (Xiaofeng et al., 2010) with 16 tasks to highlight the features 

of TALBP, where Fig. 1 presents the precedence diagram and Fig. 2 shows the detailed task 

assignment. In Fig. 1, the nodes denote tasks, labels above nodes refer to the operation times 

and preferred directions, and arrows refer to the precedence relations, e.g. the arrow between 

task ℎ and task 𝑖 indicates that task 𝑖 is an immediate successor of task ℎ. The tasks in 

TALBP are portioned into three categories: L-type tasks with left-side direction (L in 

                  



precedence diagram), R-type tasks with right-side direction (R in precedence diagram) and 

E-type tasks with either-side direction (E in precedence diagram).  

Regarding the precedence constraint, the predecessors of a task should be allocated to the 

former mated-station or the same mated-station. When they are allocated to the same 

mated-station, the successor cannot begin until its predecessors have been completed. For 

instance, task 8 cannot begin when task 6 is completed as the predecessor task 7 of task 8 is 

not completed (see Fig. 2). The idle time resulting from the precedence constraint and the 

utilization of two sides is referred to as sequence-induced idle time. This can be reduced by 

optimizing the task sequence in each workstation (Li, Kucukkoc, et al., 2017), and hence this 

task sequence in one workstation cannot be ignored. As regard to cycle time constraint, all the 

tasks in each mated-station must be completed within the given cycle time (CT), e.g. all the 

tasks in Fig. 2 are finished within 18 time units. For the direction constraint, the L-type 

(R-type) tasks must be allocated to the left side (right side), e.g. task 3, task 6 and task 12 are 

allocated to left side, and E-type tasks can be allocated to either side.  
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Fig. 1 Precedence diagram with 16 tasks, taken from (Xiaofeng et al., 2010) 
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Fig. 2 Detailed task assignment with a cycle time of 18 time units 

 

3. Proposed branch, bound and remember algorithm 

BBR algorithm is an exact method developed by Sewell & Jacobson (2012), and the main 

characteristic of this methodology is utilizing memory-based dominance rule by storing all 

the explored sub-problems. This method produces the competing results for SALBP (Battaïa 

& Dolgui, 2013; Li, Kucukkoc, & Tang, 2019; Morrison et al., 2014; Sewell & Jacobson, 

2012). Owing to the superiority of the BBR algorithm, this research puts the first attempt to 

extend this method to TALBP. Nevertheless, the difference between SALBP and TALBP is 

quite large due to the sequence-induced idle times and direction constraint. For instance, the 

task sequence in one workstation for SALBP does not matter as long as the precedence 

constraint is satisfied. The different task sequences in one workstation for TALBP, on the 

contrary, might result in different sequence-induced idle times, and thus the task sequence 

cannot be ignored. Due to these differences, task enumeration procedure and the dominance 

rules in SALBP need a big adjustment or even are not applicable. Hence, the proposed BBR 

method utilizes new dominance rules, new lower bounds and an improved task enumeration 

procedure.  

The main procedure of the proposed BBR follows that in Sewell & Jacobson (2012), and is 

presented as follows. In this procedure, 𝑈𝐵𝑁𝑀 is the upper bound on mated-station number, 

and 𝐿𝐵𝑁𝑀 is the lower bound on mated-station number. This procedure consists of three 

                  



phases, where Phase I utilizes the modified Hoffman heuristic to obtain high-quality 𝑈𝐵𝑁𝑀. 

Phase II utilizes CBFS to attempt to find the optimal solution. If Phase II fails to prove the 

optimality of the obtained solution, Phase III is conducted using breadth-first search strategy 

(BrFS). 

 

Algorithm 1: Procedure of BBR algorithm for TALBP 

% Start of Phase I  

Step 1: Calculate the 𝐿𝐵𝑁𝑀 at the root.  

Step 2: Obtain 𝑈𝐵𝑁𝑀 using modified Hoffman heuristic.  

Step 3: If 𝑈𝐵𝑁𝑀 = 𝐿𝐵𝑁𝑀, terminate this procedure; otherwise, conduct Step 4.  

% Start of Phase II 

Step 4: Execute CBFS and update 𝑈𝐵𝑁𝑀 when smaller 𝑈𝐵𝑁𝑀  is obtained. If the optimal 

solution is achieved or the termination criterion is met, terminate this procedure.  

% Start of Phase III 

Step 5: Execute BrFS and update 𝑈𝐵𝑁𝑀  when smaller 𝑈𝐵𝑁𝑀  is obtained. If the optimal 

solution is achieved or the termination criterion is met, terminate this procedure. 

 

The procedure of executing search strategy CBFS or BrFS is illustrated in Algorithm 2. Here, 

a partial solution is referred to as  = ( , 𝑈,  ,   ,  ,   ), where 𝑛𝑗 is the utilized 

mated-station number in  ,    denotes the set of tasks allocated to mated-station 𝑗,   is 

the set of allocated tasks ( = ⋃   
  
   ) and 𝑈 is the set of unallocated tasks (𝑈 = 𝐼  ). 

Notice that one sub-problem 𝑌 is stored in memory for exploration at a later iteration after 

applying the 𝐿𝐵1𝑁𝑀, 𝐿𝐵2𝑁𝑀, 𝐿𝐵3𝑁𝑀 and all the dominance rules. 𝐿𝐵4𝑁𝑀 is applied only 

for the sub-problem in memory as 𝐿𝐵4𝑁𝑀 costs a lot of computation time following (Sewell 

& Jacobson, 2012) and (Morrison et al., 2014) (please check the codes on the webpage 

“https://assembly-line-balancing.de”). For a sub-problem 𝑌 , if 𝑈𝐵𝑁𝑀 ≤ 𝐿𝐵4𝑁𝑀 , the 

sub-problem 𝑌 is not tested anymore whereas it is preserved in memory for memory-based 

rules.  

 

Algorithm 2: The procedure of executing the search strategy 

1  While  𝑈𝐵𝑁𝑀 > 𝐿𝐵𝑁𝑀 and termination criterion not met 

2 
Select an unexplored and non-dominated partial solution   ( , 𝑈,  ,  , ,   ) 

with the utilized search strategy 

3 While the task enumeration tree for partial solution    is not empty 

                  



4 
Obtain a new partial solution 𝑌 (  , 𝑈 ,  ,  , ,   ,     ) at next depth 

with branching method 

5  𝑈𝐵𝑁𝑀  𝑛𝑗  1 when 𝑌 is complete solution and  𝑈𝐵𝑁𝑀 > 𝑛𝑗  1 

6 Apply the maximal load rule and delete 𝑌 if it is dominated 

7 
Calculate 𝐿𝐵1𝑁𝑀, 𝐿𝐵2𝑁𝑀 and 𝐿𝐵3𝑁𝑀 of sub-problem 𝑌 and delete 𝑌 when 

𝑈𝐵𝑁𝑀 ≤ 𝑚𝑎𝑥*𝐿𝐵1𝑁𝑀, 𝐿𝐵2𝑁𝑀, 𝐿𝐵3𝑁𝑀+ 

8 
Apply the extended Jackson rule and no-successors rule and delete 𝑌 if it is 

dominated 

9 
Apply the memory-based dominance rule, memory-based maximal load rule and 

memory-based extended Jackson rule and delete 𝑌 if it is dominated 

10 
Save sub-problem 𝑌  for exploration and usage in memory-based 

dominance rules 

11 
Calculate the 𝐿𝐵4𝑁𝑀  of sub-problem 𝑌  and mark Y as explored if 

𝑈𝐵𝑁𝑀 ≤ 𝐿𝐵4𝑁𝑀 

12 Endwhile 

13 Endwhile 

 

3.1 Branching 

There are two popular branching methods: task-oriented branching (Johnson, 1988; Nourie & 

Venta, 1991) and station-oriented branching (Hoffmann, 1992; Scholl & Klein, 1997, 1999) 

when utilizing B&B algorithm to address SALBP. In the task-oriented branching method, the 

task sequences are enumerated and subproblems are generated by allocating tasks to the 

current workstation if there is plenty of remaining time, or to the next workstation when there 

is not enough remaining time. Regarding the station-oriented branching, the task assignments 

in workstations are enumerated and subproblems are created by allocating a set of tasks 

together or a complete load to the next workstation. Regarding the performances of the two 

branching methods, the station-oriented branching shows superior performance over 

task-oriented branching (Scholl & Klein, 1997, 1999; Sewell & Jacobson, 2012) in solving 

the SALBP.  

Nevertheless, the published B&B algorithms (Wu et al., 2008; Xiaofeng et al., 2010) in 

solving the TALBP utilize only task-oriented branching and there are no applications of 

                  



station-oriented branching. Inspired by the high performance of station-oriented branching in 

solving the SALBP, the proposed BBR method also employs the station-oriented branching. 

As the two-sided assembly line utilizes mated-stations and there are connections among tasks 

allocated to two sides inside one mated-station, this research proposes a modified 

station-oriented branching method, referred to as mated-station-oriented branching. Namely, 

sub-problems are created by allocating a set of tasks together or a complete load to the next 

mated-station.  

3.1.1 Original task enumeration procedure 

The original task enumeration procedure is presented as follows to obtain all the possible full 

loads for one mated-station. For one mated-station, the assignable tasks in depth 1 are 

generated and allocated at first, then the assignable tasks in depth 2 are generated and 

allocated and this procedure is terminated when no assignable task exists. Figure 3 presents 

the enumerated tree of an illustrated instance, which has four tasks and is taken from the 

precedence diagram in Fig. 1. This enumeration procedure is similar to that in (Wu et al., 

2008), where the E-type tasks should be tested on both left side and right side. For instance, 

task 7 should be considered with 7L and 7R, respectively, when branching. Clearly, this 

enumeration tree ensures that all feasible task sequences are enumerated and tested. When 

obtaining the full loads for one mated-station, a branch is terminated when no unallocated 

tasks can be completed within the remaining time; the assigned tasks up to that point then 

form a full load. Clearly, the enumeration tree to generate full loads for one mated-station is 

much smaller than the full enumeration tree utilized in task-oriented branching by (Wu et al., 

2008).  
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Fig. 3 The enumerated tree of the illustrated instance 

3.1.2 Improved task enumeration procedure 

The original task enumeration procedure above has two possible drawbacks in solving 

large-size instances: 1) there are many “poor” full loads with a lot of idle times and a lot of 

running time is wasted to prune these “poor” full loads; 2) there are many different task 

sequences for the tasks allocated to one mated-station and a tremendous amount of time is 

consumed in achieving all the full loads for one sub-problem. Hence, this study presents an 

improved task enumeration procedure to speed up the search process. The proposed 

improvements are proposed as follows to achieve the most promising full loads as soon as 

possible. 

% Improvement 1 

Step 1: The candidates (potential branching decisions) are divided into two sets: (i) Set 

                  



A contains L-type tasks with left side, R-type tasks with right side and E-type 

tasks with the side with more remaining time or left side when both sides have 

the same remaining time. (ii) Set B contains the remaining candidates.  

% Improvement 2 

Step 2: The candidates in Set A are further divided into two sets: (i) Set C contains the 

tasks with the smallest sequence-induced idle time when they are allocated to the 

corresponding workstation. (ii) Set D contains the tasks with more 

sequence-induced idle times. 

% Improvement 3 

Step 3: The candidates in Set C are renumbered, where tasks with larger ranked 

positional weight (Helgeson & Birnie, 1961) and operation time are enumerated 

first. 

During enumeration, the candidates (potential branching decisions) in Set C are first 

enumerated, and the remaining candidates (in Set B and Set D) are enumerated only when all 

the candidates in Set C in each depth have been enumerated. Step 1 aims at quickly obtaining 

loads with balanced workloads on both sides of a mated-station. Step 2 tries to achieve 

high-quality loads with less sequence-induced idle time as soon as possible and Step 3 tries to 

allocate the “hard” tasks at first to have more tasks assignable. In short, all these 

improvements are in favor of achieving a set of high-quality mated-station loads as soon as 

possible. Additionally, the proposed improved task enumeration procedure terminates when 

the number of full loads reaches to a predetermined number (set to 10,000) when solving the 

large-size instances following (Sewell & Jacobson, 2012), (Morrison et al., 2014) and (Li et 

                  



al., 2018). Notice that, if there is no limit of the number of achieved full loads, the improved 

task enumeration procedure is capable of achieving all the possible station loads. 

In fact, if the three improvements are not utilized, there would be a lot of “poor” full loads 

and the BBR method would not obtain high-quality solutions for some instances. Also, if 

there is no limit on the number of full loads, the BBR method would be very slow and unable 

to obtain high-quality solutions within an acceptable amount of computation time. As you 

will see in Section 4.1, this improved task enumeration procedure enhances the performance 

of the BBR method by a significant margin in solving the large-size instances. The detailed 

applications of the two task enumeration procedures are clarified as follows.  

1) Firstly, Phase I performs the improved task enumeration procedure with a limit of 10,000 

station loads to obtain a high-quality upper bound. 

2) Subsequently, Phase II conducts the improved task enumeration procedure with a limit of 

10,000 station loads to obtain a set of high-quality full loads as soon as possible.  

3) Finally, Phase III performs the original task enumeration procedure (or improved task 

enumeration procedure) without limitation on the station loads to achieve all the possible 

station loads.  

Hence, the proposed BBR algorithm is an exact method which is capable of achieving the 

optimal solutions and verifying the optimality of the achieved solutions when solving both 

small-size and large-size instances.  

3.2 Upper bound and lower bounds 

The proposed BBR proposes a modified Hoffman heuristic (MHH) to achieve 𝑈𝐵𝑁𝑀 before 

branching. MHH utilizes the same procedure as the Hoffman heuristic (Hoffmann, 1963), 

                  



where the solution is built for one mated-station at a time. MHH first generates all the 

possible or a predetermined number of mated-station loads for the first mated-station, and 

then selects the best one as the task assignment to the current mated-station. Then MHH 

generates a set of full loads and selects the best one for the second mated-station, and this 

procedure is terminated when all the tasks are allocated. The mated-station number of the 

achieved solution is regarded as 𝑈𝐵𝑁𝑀. Following Sewell & Jacobson (2012), the proposed 

MHH selects a load with the maximum value of ∑ (𝑡𝑖  𝛼 ∙ 𝑤𝑖  𝛽 ∙ |𝑆(𝑖)| − 𝛾 − 𝛾 ∙ 𝐷𝑖)𝑖∈𝐶𝑀 . 

In this expression, 𝐶  is the set of tasks that can be allocated to the current new 

mated-station, 𝑆(𝑖) (𝑆𝑎(𝑖)) refers to the set of immediate (all) successors of task 𝑖, 𝑤𝑖 is the 

positional weight of task 𝑖 (𝑤𝑖 = 𝑡𝑖  ∑ 𝑡ℎℎ∈𝑆𝑎(𝑖) ), 𝐷𝑖 is set to 1 when task 𝑖 is E-type task 

and 0 when task 𝑖 is L-type or R-type task. The rationale of this expression is clarified as 

follows. The 𝑡𝑖, 𝑤𝑖 and |𝑆(𝑖)| encourage the task with the larger operation time, the larger 

positional weight and the larger number of successors. The term −𝛾  and term −𝛾 ∙

𝐷𝑖  encourage the task with a larger operation time and with left direction or right direction 

respectively, aiming at making the remained tasks easier to pack.  

There are three parameters, namely 𝛼, 𝛽 and 𝛾. The values of these parameters are set 

based on published papers: 𝛼 ∈ *0,0.005,0.01,0.015,0.02+, 𝛽 ∈ *0,0.005,0.01,0.015,0.02+ 

and 𝛾 ∈ *0,0.01,0.02,0.03+. The proposed MHH is run using each combination of these 

values, and the best one is regarded as the final solution by MHH. To avoid much time in 

generating mated-station load, the number of mated-station loads is limited to 1,000. In 

addition, the improvements introduced in Section 3.1 are also applied to achieve the most 

promising full loads as soon as possible. 

                  



The lower bounds in SALBP are not applicable to TALBP, and hence this research modifies 

lower bounds in SALBP to suit TALBP. This research builds the lower bounds for TALBP 

based on three standard lower bounds (Scholl & Klein, 1997), LB1, LB2 and LB3, and a 

tighter lower bound, BPLB, by solving the bin packing problem (Sewell & Jacobson, 2012). 

Here, BPLB is achieved by a separate branch-and-bound solver to solve the bin packing 

problem  and computation time for this branch-and-bound solver is limited to 1 second (see 

(Sewell & Jacobson, 2012) and (Morrison et al., 2014)). The three standard lower bounds 

have been widely applied, and they are clarified using expressions (1-4), where 𝑇 is a set of 

tasks. BPLB is developed by Sewell & Jacobson (2012) by relaxing SALBP into the bin 

packing problem and the solution by solving the bin packing problem is regarded as the 

BPLB.  

 

  1 = ⌈∑ 𝑡𝑖𝑖∈ 𝐶𝑇⁄ ⌉  (1) 

  2 = |*𝑖 ∈ 𝑇|𝑡𝑖 > 𝐶𝑇 2+|  ⌈
|*𝑖 ∈ 𝑇|𝑡𝑖 = 𝐶𝑇 2+|

2
⌉ (2) 

  3 = ⌈∑ 𝑤𝑖
𝑖∈ 

⌉ (3) 

𝑤𝑖 =

{
 

 
1  if  𝑡𝑖 > 2 ∙ 𝐶𝑇 3

2 3  ⁄ if  𝑡𝑖 = 2 ∙ 𝐶𝑇 3

1 2   if  𝐶𝑇 3   𝑡𝑖  2 ∙ 𝐶𝑇 3⁄

1 3⁄   if  𝑡𝑖 = 𝐶𝑇 3

 (4) 

To apply these lower bounds to TALBP, this research first defines four operations,   1(T), 

  2(T),   3(T) and  P  (T), denoting the achieved LB1, LB2, LB3 and BPLB for task 

set T. Subsequently, there are four lower bounds on mated-station number: 𝐿𝐵1𝑁𝑀, 𝐿𝐵2𝑁𝑀, 

𝐿𝐵3𝑁𝑀 and 𝐿𝐵4𝑁𝑀. These lower bounds are calculated with expressions (5-8), where I is 

the set of remained tasks, and AL or AR is the set of remained tasks with left or right 

                  



direction. Recall that 𝐿𝐵1𝑁𝑀 is equivalent to the lower bound in Hu et al. (2008) and lower 

bound 1 in Wu et al. (2008). 𝐿𝐵3𝑁𝑀 is equivalent to the lower bound 2 in Wu et al. (2008). 

For a new sub-problem, 𝐿𝐵1𝑁𝑀, 𝐿𝐵2𝑁𝑀 and 𝐿𝐵3𝑁𝑀 are first applied. If the sub-problem 

achieves 𝐿𝐵𝑁𝑀 equal to or larger than 𝑈𝐵𝑁𝑀 , this sub-problem is pruned. If this new 

sub-problem cannot be pruned by these three lower bounds, 𝐿𝐵4𝑁𝑀 is applied as 𝐿𝐵4𝑁𝑀 

consumes much more running time. 

𝐿𝐵1𝑁𝑀 = max {⌈
  1(I)

2
⌉ ,   1(  ),   1( R)} (5) 

𝐿𝐵2𝑁𝑀 = max {⌈
  2(I)

2
⌉ ,   2(  ),   2( R)} (6) 

𝐿𝐵3𝑁𝑀 = max {⌈
  3(I)

2
⌉ ,   3(  ),   3( R)} (7) 

𝐿𝐵4𝑁𝑀 = max {⌈
 P  (I)

2
⌉ ,  P  (  ),  P  ( R)} (8) 

3.3 Dominance rules 

The maximal load rule and Jackson dominance rule cannot be directly applied to TALBP due 

to sequence-induced idle time. An illustrated example is presented in Fig. 4 to show why the 

general maximal load rule cannot be directly applied to TALBP. Let us assume that there is an 

unallocated E-type task 𝑗 whose predecessors have been allocated. Task 𝑖 is the predecessor 

of task 𝑗 and there is enough time remaining to complete task 𝑗 on the left side. For the 

SALBP, the partial solution is pruned when the remaining time is larger than or equal to the 

operation time of task  𝑗. Nevertheless, this partial solution cannot be pruned for TALBP as 

task 𝑖 is the predecessor of task 𝑗 and the remaining time on the right side is not enough to 

complete task  𝑗. Hence, the remaining capacities of both sides should be considered at the 

same time when applying the maximal load rule. Similarly, it is also necessary to consider the 

remaining capacities of both sides when applying the Jackson dominance rule. 
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Fig. 4 An illustrated example of applying the maximal load rule 

There are two possible situations for adapting the maximal load rule: 1) both sides have 

enough remaining time to complete task  𝑗; 2) only one side has enough remaining time to 

complete task  𝑗. For the first situation, the maximal load rule can be applied directly. For the 

second situation, a partial solution can be pruned satisfying two conditions: 1) only one 

station has enough remaining time to complete task  𝑗; 2) the sum of the operation time of 

task 𝑗 and the maximum completion time of the predecessors of task 𝑗 on this mated-station 

is not larger than the cycle time. Clearly, the second method needs to store the completion 

times of all tasks on this mated-station and also consumes a lot of time to check whether the 

second condition is satisfied.  

The first method to handle the first situation is quick and easy to be implemented, but it might 

not be able to prune some sub-problems. Luckily, the memory-based dominance rule can 

remedy this drawback by storing all the explored sub-problems, and thus this paper employs 

two new dominance rules: memory-based maximal load rule and memory-based extended 

Jackson rule. Taking the memory-based maximal load rule as an example, for a 

sub-problem   

with assigned tasks  , if a stored sub-problem with the same mated-station number has a set 

of assigned tasks    that satisfies     , the sub-problem   is pruned. Note that the 

                  



memory-based maximal load rule may not take full advantage of potential pruning because it 

needs to check the sub-problems   (  , 𝑈 ,   ,    ,  ,    )  that have already been 

generated in order to prune the sub-problem   ( , 𝑈,  ,   ,  ,   ). Namely, this is a 

tradeoff between more pruning and faster running time. 

The applied dominance rules are presented as follows, and they are developed based on the 

dominance rules for SALBP (Morrison et al., 2014; Sewell & Jacobson, 2012). Recall that, 

the dominance rules are applied once a full station load is achieved during the task 

enumeration procedure. When applying these dominance rules, the maximal load rule, the 

extended Jackson rule and the no-successor rule are first applied. If this sub-problem cannot 

be pruned, the memory-based rules are applied successively.  

Maximal load rule: A partial solution is pruned if 1) this partial solution contains a station 

load ⋃   
  
   , and 2) there is an unallocated task whose predecessors have been allocated to 

the former 𝑗 mated-stations, 3) the remaining times on both sides of the last mated-station 

are larger than or equal to the operation time of this task.  

Extended Jackson rule: A partial solution is pruned if 1) the set of tasks allocated to the last 

mated-station contains a task 𝑖  and there is task   ℎ  such 

that   ℎ ∈ {𝑐|𝑐 ∈ 𝐼 − (𝑃𝑎(𝑖)⋃𝑆𝑎(𝑖)) } , 𝑡𝑖 ≤ 𝑡ℎ  and 𝑆𝑎(𝑖)  𝑆𝑎(ℎ) , 2) task 𝑖 and task ℎ 

have the same preferred direction, 3) task ℎ can replace task 𝑖 without violating precedence 

constraint, 4) both the remaining times in both sides are larger than or equal to 𝑡ℎ − 𝑡𝑖. 

Recall that 𝑃𝑎(𝑖) and 𝑆𝑎(𝑖) denote the set of all predecessors or successors of task 𝑖, 

respectively. 

No-successor rule: A partial solution is pruned if 1) the set of tasks allocated to the last 

                  



mated-station has no successors, and 2) there exists an unallocated task which has one or 

several successors.  

Memory-based dominance rule: A partial solution is pruned if this partial solution has the 

same assigned tasks and no smaller mated-station number as a previously-explored 

sub-problem.  

Memory-based maximal load rule: A partial solution is pruned if 1) its set of allocated 

tasks is a subset of the allocated tasks in a previously explored subproblem; 2) the number of 

its utilized mated-stations is not less than that of this previously-explored sub-problem. 

Memory-based extended Jackson rule: A partial solution is pruned if 1) this partial solution 

contains the same allocated tasks as a previously explored sub-problem except task 𝑖 in this 

partial solution and task ℎ  in the previously explored sub-problem, 2) ℎ ∈ {𝑐|𝑐 ∈ 𝐼 −

(𝑃𝑎(𝑖)⋃𝑆𝑎(𝑖)) }, 𝑡𝑖 ≤ 𝑡ℎ and 𝑆𝑎(𝑖)  𝑆𝑎(ℎ), 3) task 𝑖 and task ℎ have the same preferred 

direction or task 𝑖 is an E-type task.  

3.4 Search strategy 

Search strategy has a great impact on the speed of a B&B algorithm by determining the 

sequence of sub-problems being explored. If the most promising sub-problem is first 

explored, new upper bound might be achieved very fast and many subproblems with lower 

bounds no smaller than the upper bounds can be pruned. There are mainly four search 

strategies in B&B algorithms: depth-first search strategy (DFS), best-first search strategy 

(BFS), breadth-first search strategy (BrFS) and cyclic best-first search strategy (CBFS).  

DFS explores one sub-problem at depth 1, one at depth 2 and finally one at the deepest level 

of the search tree. Afterwards, DFS returns to the top of the tree after exhausting all 

                  



sub-problems within that sub-tree. DFS has a fast speed to achieve a complete solution, and 

among the methods utilizing different types of DFS (Hoffmann, 1992; Johnson, 1988; Scholl 

& Klein, 1997, 1999), SALOME (Scholl & Klein, 1997, 1999) produces the best results. BFS 

selects the best sub-problem regarding the selection criterion from a set of unexplored 

sub-problems. To achieve a complete solution quickly, the selection criterion can be designed 

to select the sub-problem with the maximum number of utilized workstations. BrFS is the 

slowest strategy to achieve a complete solution, and sometimes it might even hardly achieve 

a complete solution before the termination criterion is met. This method first generates all the 

sub-problems at depth 1, and then explores the sub-problems and generates all the 

subproblems at depth 2, and so on. The procedure is terminated after generating all the 

solutions at the deepest depth. CBFS is a recently developed strategy by hybridizing DFS and 

BFS (Sewell & Jacobson, 2012). CBFS first selects and explores one best sub-problem at 

depth 1, and subsequently selects and explores one best sub-problem at the next depth until 

one best sub-problem at the deepest depth is explored. It then returns to the highest level and 

this cycle is repeated until a termination criterion is satisfied. The main difference between 

DFS and CBFS is that CBFS selects the most promising sub-problem to be explored at each 

depth.  

This research proposes CBFS as the search strategy as BBR with CBFS has produced the 

state-of-the-art results for SALBP (Sewell & Jacobson, 2012). The main procedure of CBFS 

strategy is presented in Algorithm 3. For a sub-problem  = ( , 𝑈,  ,   ,  ,   ), the 

sub-problem selection criterion is set as  ( ) = 𝐿𝐵𝑁𝑀(𝑈)   𝑇𝐼 𝑛𝑗⁄ −  |𝑈|⁄  following 

(Sewell & Jacobson, 2012), where 𝑇𝐼 is the total idle in the former 𝑛𝑗 mated-station and   

                  



is an input parameter (set to 0.02). In this expression, 𝐿𝐵𝑁𝑀(𝑈)   encourages the 

sub-problem with smaller lower bounds,  𝑇𝐼 𝑛𝑗⁄  encourages full loads and − |𝑈|⁄  

encourages tasks with larger operation times. Among a set of sub-problems at each depth, 

CBFS selects the one with the minimum value of  ( ).  

 

Algorithm 3: Procedure of CBFS strategy 

𝑘 = 0; 

While (there exists unexplored sub-problem at any depth) 

𝑘 = 𝑘  1; 𝑘 = 𝑘%(𝑈𝐵𝑁𝑀 − 1); 

If (there is no unexplored sub-problem at depth 𝑘) 

Continue;  

Else 

Select a sub-problem   at depth 𝑘 with the minimum value of  ( ); 

Generate and store the children of the selected sub-problem   at depth 𝑘  1; 

Endif 

Endwhile 

 

4. Computational study 

To evaluate the proposed improvements and the proposed BBR algorithm, this section first 

tests these improvements on the performance of BBR algorithm, and subsequently compares 

the BBR algorithm with the B&B algorithm of (Xiaofeng et al., 2010) and the current best 

heuristic algorithm, IG algorithm (Li, Tang, et al., 2017).  

All the well-known benchmark problems for TALBP are solved, including the instances in 

(Li, Tang, et al., 2017) and the instances in (Xiaofeng et al., 2010). These tested benchmarks 

consist of four small-size problems (P9, P12, P16 and P24) and three large-size problems 

(P65, P148 and P205). The precedence diagrams of P9, P12 and P24 are taken from (Kim et 

al., 2000); the  

precedence diagrams of P16, P65 and P205 are taken from (Lee, Kim, & Kim, 2001) and the 

precedence diagram of P148 is taken from (Bartholdi, 1993), where the operation times of 

                  



task 79 and task 108 are changed as suggested by (Lee et al., 2001). As each problem has 

several different cycle times, there are a total number of 59 instances. Recall that the 

benchmark instances in SALBP are different from that in TALBP as there are direction 

constraints in TALBP. The algorithms are coded in C++ on the platform of Microsoft Visual 

Studio 2015 and run on a personal computer equipped with Intel(R) Core (TM) i7-4790S 

3.20GHZ CPU and 8.00GB RAM.  

4.1 Evaluation of the improvements 

This section tests the improvements presented in Section 3, and the proposed algorithm is 

compared to other algorithms where these improvements are selectively disabled (the original 

branch, bound and remember algorithms). These compared algorithms are presented as 

follows.  

1) BBR-oldEnu: The original task enumeration procedure in Fig. 3 is utilized in Phase I 

and Phase II, and the original task enumeration procedure in Phase II terminates after 

achieving all the possible mated-station loads. 

2) BBR-limOldEnu: The original task enumeration procedure in Fig. 3 is utilized in Phase 

I and Phase II, and the original task enumeration procedure in Phase II terminates when 

the number of full loads reaches a predetermined number (set to 10,000).  

3) BBR-noRenumber: The tasks are enumerated in the original order in Phase II when 

utilizing the improved task enumeration procedure.  

4) BBR-noMHH: The MHH or Phase I is not utilized to achieve initial upper bounds. 

5) BBR-noBPLB: The BPLB is not utilized as the lower bound in Phase II.  

6) BBR-noMem: Memory-based dominance rule, memory-based maximal load rule and 

                  



memory-based extended Jackson rule are not utilized in Phase II.  

7) BBR-BFS: BFS is utilized as the search strategy in Phase II.  

To evaluate the performance on different instances, the relative percentage deviation or RPD 

is employed using the expression (9). In this expression, 𝑈𝐵𝑁𝑀 is the achieved upper bound 

on mated-station number, and 𝐿𝐵𝑁𝑀 is the lower bound on mated-station number, where 

𝐿𝐵𝑁𝑀 is updated during the search process. If RPD is equal to 0.0, the achieved upper bound 

is the optimal solution.  

 𝑃𝐷 = 100 ∙ (𝑈𝐵𝑁𝑀 − 𝐿𝐵𝑁𝑀) 𝐿𝐵𝑁𝑀⁄  (9) 

All the algorithms are tested under three maximum running times (10 s, 50 s and 100 s), 

where BBR terminates when the optimal solution is achieved or computational time reaches 

the given maximum time. Table 1 illustrates the number of instances solved optimally 

(#OPT), detailed average RPD values and average running times. From this table, it is 

observed that proposed BBR is the fastest method which achieves all the optimal solutions 

when the maximum time is equal to 10s, 50s or 100s. The BBR-oldEnu and the 

BBR-limOldEnu are the two worst performers, and they cannot achieve new optimal 

solutions with increased running time. This finding demonstrates the superiority of the 

improved task enumeration procedure over the original task enumeration procedure. In fact, 

this superiority is because the improved task enumeration procedure is capable to reduce the 

sequence-induced idle times effectively. It is also observed that BBR-noMem cannot achieve 

all the optimal solutions with increased running time, demonstrating the superiority of the 

proposed memory-based rules. As for other improvements, they show slightly better 

performance. For instance, if BPLB is not utilized, BBR will cost more running time to 

                  



achieve all the optimal solutions. Notice that BPLB can obtain tighter lower bounds with the 

cost of a larger computation time, and the benefit is saving the time by pruning more partial 

solutions. If the consumed time to calculate the BPLB is larger than the time saved by 

pruning more partial solutions, the utilization of BPLB will result in a larger computation 

time; otherwise, the utilization of BPLB will reduce the computation time. Whether BPLB 

will help reduce the computation time might differ from one instance to another as observed 

in preliminary experiments. Still, as BPLB is capable of obtaining tighter lower bounds and 

might verify the optimality of some special instances, the BPLB is utilized in this study. In 

summary, this comparative study demonstrates the superiority of the proposed improvements, 

and the improved task enumeration procedure and the memory-based rules among these 

improvements are the most important factors which affect the performance of the BBR 

algorithm by a significant margin.  

Table 1 Results by BBR algorithms 

Maximum time 10s 50s 100s 

Evaluation index #OPT RPD Time #OPT RPD Time #OPT RPD Time 

BBR-oldEnu 30 9.31  5.57  30 9.31  25.18  30 9.31  49.93  

BBR-limOldEnu 35 7.20  5.04  35 6.80  21.19  35 6.56  41.49  

BBR-noRenumber 57 0.43  0.59  58 0.19  1.51  58 0.19  2.31  

BBR-noMHH 58 0.85  2.06  58 0.85  2.70  58 0.85  3.62  

BBR-noBPLB 59 0.00  0.67  59 0.00  0.67  59 0.00  0.67  

BBR-noMem 55 1.05  0.91  56 0.77  3.29  56 0.77  5.84  

BBR-BFS 57 0.43  0.67  59 0.00  1.19  59 0.00  1.19  

Proposed BBR 59 0.00  0.64  59 0.00  0.64 59 0.00  0.64  

*Best in bold.  

4.2 Comparative study  

This section presents the comparative study among BBR, B&B and IG algorithms. Notice 

that IG is the best heuristic algorithm when utilizing the best combination of the decoding 

scheme and objective function, but this algorithm might show poor performance when 

                  



utilizing low-quality decoding scheme and objective function (Li, Kucukkoc, et al., 2017). 

Hence, the proposed IG utilizes the best combination of the decoding scheme and objective 

function presented in (Li, Tang, et al., 2017). The tested BBR terminates when the optimal 

solution is achieved or computational time reaches 500 s. IG algorithm runs each instance for 

10 times with the termination criterion of achieving the mated-station number equal to the 

lower bound at the root or running time reaches 500 s. The results of the B&B algorithm, 

which was coded and run on a Pentium-4 2.66 GHz personal computer equipped with 2 GB 

of memory, are directly taken from the literature (Xiaofeng et al., 2010). 

The detailed results are exhibited in Table 2, where LBNM-root reports the lower bound at 

root,  

OPT refers to the optimal mated-station number and 𝑈𝐵𝑁𝑀 and 𝐿𝐵𝑁𝑀 are the upper bound 

and lower bound by the proposed BBR method. NM-Avg and Time-Avg are the average 

mated-station number and the average running time with a time unit of second by IG 

algorithm in ten times’ running. Among these instances, Phase II is capable of verifying the 

optimality when solving P9, P12, P16 and P24 by testing all the station loads where the 

branching limit is not reached. Nevertheless, the branching limit is reached for P65, P148 and 

P205. Hence, Phase II tries to prove the optimality of the obtained solutions by checking 

𝐿𝐵𝑁𝑀 at the root when solving P65, P148 and P205. 

  

                  



 

Table 2 Computational results by algorithms 

Problem CT LBNM-root OPT 
B&B algorithm IG MHH BBR 

𝑈𝐵𝑁𝑀 𝐿𝐵𝑁𝑀 Time  NM-Avg Time-Avg  NM Time 𝑈𝐵𝑁𝑀 𝐿𝐵𝑁𝑀 Time 

P9 

 

3 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

4 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

5 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

6 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

7 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

P12 

 

4 4 4 4 4 0.02 4 0.00  4 0.00  4 4 0.00  

5 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

6 3 3 3 3 0.02 3 0.00  3 0.00  3 3 0.00  

7 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

8 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

9 2 2 - - - 2 0.00  2 0.00  2 2 0.00  

P16 

 

15 3 4 - - - 4 500.00  4 0.01  4 4 0.85  

16 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

18 3 3 3 3 0.02 3 0.00  3 0.00  3 3 0.00  

19 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

20 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

21 2 3 - - - 3 500.00  3 0.00  3 3 0.85  

22 2 2 2 2 0.02 2 0.00  2 0.00  2 2 0.00  

P24 

 

18 4 4 - - - 4 0.01  4 0.00  4 4 0.00  

20 4 4 - - - 4 0.00  4 0.00  4 4 0.00  

24 3 3 - - - 3 0.10  4 0.27  3 3 1.19  

25 3 3 3 3 0.14 3 0.01  3 0.00  3 3 0.00  

30 3 3 - - - 3 0.00  3 0.00  3 3 0.00  

35 2 2 - - - 2 0.01  2 0.00  2 2 0.00  

40 2 2 2 2 0.12 2 0.01  2 0.00  2 2 0.00  

P65 

 

326 8 8 - - - 8 0.25  9 1.39  8 8 2.80  

381 7 7 7 7 0.34 7 0.23  8 1.41  7 7 0.02  

435 6 6 - - - 6 0.24  7 1.37  6 6 2.79  

490 6 6 6 6 17.2 6 0.27  6 0.01  6 6 0.01  

512 5 5 6 5 173551 5 14.54  6 1.16  5 5 8.96  

544 5 5 5 5 45 5 0.24  5 0.01  5 5 0.01  

P148 

 

204 13 13 13 13 30.2 13 6.18  13 0.05  13 13 0.05  

228 12 12 12 12 13257 12 6.58  12 0.05  12 12 0.06  

255 11 11 11 11 10.06 11 6.95  11 0.05  11 11 0.05  

306 9 9 - - - 9 6.45  9 0.04  9 9 0.04  

357 8 8 8 8 48.13 8 7.01  8 0.03  8 8 0.04  

378 7 7 8 7 184464 7 6.71  7 0.03  7 7 0.04  

408 7 7 7 7 36.4 7 6.71  7 0.03  7 7 0.04  

454 6 6 6 6 8065 6 6.62  6 0.04  6 6 0.04  

459 6 6 - - - 6 6.74  6 0.03  6 6 0.04  

510 6 6 6 6 18.43 6 7.77  6 0.03  6 6 0.04  

P205 

 

1133 11 11 - - - 11 18.75  11 0.82  11 11 0.19  

1275 10 10 10 10 17.87 10 19.09  10 0.04  10 10 0.04  

1322 9 9 - - - 9 68.59  10 3.57  9 9 9.05  

1455 9 9 9 9 16.08 9 18.79  9 0.03  9 9 0.03  

1510 8 8 - - - 8 18.32  9 3.00  8 8 0.29  

1650 8 8 8 8 27683 8 18.56  8 0.03  8 8 0.03  

1699 7 7 - - - 7 18.35  8 2.81  7 7 9.75  

1888 7 7 - - - 7 17.66  7 0.03  7 7 0.03  

1920 7 7 7 7 44.3 7 18.70  7 0.03  7 7 0.03  

2077 6 6 - - - 6 17.85  6 0.02  6 6 0.02  

2100 6 6 6 6 19753 6 18.21  6 0.05  6 6 0.03  

2266 6 6 - - - 6 18.73  6 0.03  6 6 0.04  

2300 6 6 6 6 61.19 6 20.00  6 0.03  6 6 0.03  

2454 5 5 - - - 5 19.37  5 1.77  5 5 0.02  

2500 5 5 5 5 24591 5 18.87  5 0.02  5 5 0.02  

2643 5 5 - - - 5 19.05  5 0.04  5 5 0.03  

2800 5 5 5 5 4.2 5 18.18  5 0.03  5 5 0.04  

2832 5 5 - - - 5 18.42  5 0.03  5 5 0.04  

                  



 

It is observed that BBR achieves all the optimal solutions for all the tested cases. B&B 

algorithm, on the contrary, cannot find the optimal solutions for two cases, P65 with a cycle 

time of 512 and P148 with a cycle time of 378. Regarding the running time, the proposed 

BBR method can solve all the instances within 10s optimally and the average running time by 

BBR is only 0.64s. Clearly, BBR is an effective and efficient methodology by outperforming 

the B&B algorithm in achieving a greater number of optimal solutions. 

IG is also capable of achieving all the optimal solutions in each run, but it cannot prove the 

optimality of two cases, P16 with a cycle time of 15 and P16 with a cycle time of 21. The 

overall average time by IG algorithm in solving all the instances is 24.90 s while the overall 

average time by BBR is only 0.64s. BBR shows clear superiority in search speed by 

consuming less running time. As time limit might overly penalize IG by artificially inflating 

its average running time, this study also compares the average times by the IG algorithm and 

BBR method in solving the instances where the optimal mated-station number is equal to the 

𝐿𝐵𝑁𝑀 at root (P16-15 and P16-21 are not included). The average time by IG algorithm in 

solving these instances is 8.23s where the average time by BBR is only 0.87s. Again, BBR 

shows clear superiority in search speed. As for MHH, it achieves 53 optimal solutions out of 

59 instances or 89.83% optimal solutions with a running time of 0.21s on average. 

Notice that Phase III was not needed in solving these instances as Phase II was capable of 

proving the optimality of all the obtained solutions. However, in preliminary experiments, it 

was observed that Phase III was capable of obtaining the optimal solutions and verifying the 

optimality when Phase II was not conducted. The reason behind the utilization of Phase III is 

that Phase II might not verify the optimality of the obtained solutions as the improved task 

                  



enumeration procedure in Phase II terminates upon reaching a predetermined number of 

station loads. The original task enumeration procedure (or improved task enumeration 

procedure) in Phase III, on the contrary, achieves all the station loads and hence ensures that 

the proposed BBR method is an exact method in theory.  

In summary, the proposed BBR outperforms B&B in both solution quality and speed, and 

BBR outperforms IG algorithm in search speed. BBR is capable of finding all the optimal 

solutions within 1.0 s on average and is the state-of-the-art methodology for TALBP with 

mated-station minimization criterion.  

5. Conclusion and future research 

This research presents a new BBR algorithm to solve the TALBP with the mated-station 

number minimization criterion. The proposed algorithm utilizes the modified Hoffman 

heuristic to obtain a high-quality initial solution as the upper bound. Due to the specific 

characteristic of TALBP, the task enumeration procedure and dominance rules in the simple 

assembly line balancing problem (SALBP) are ineffective or not applicable to TALBP. Hence, 

this paper proposes an improved task enumeration procedure, modifies the dominance rules 

for SALBP and develops two new dominance rules: memory-based maximal load rule and 

memory-based extended Jackson rule. This algorithm also employs several other 

improvements, including renumbering the tasks, new lower bounds and a new criterion to 

select the most promising sub-problem. This algorithm is compared with the current best 

exact method, the B&B algorithm (Xiaofeng et al., 2010), and the current best heuristic 

algorithm, IG algorithm (Li, Tang, et al., 2017). Computational results demonstrate the 

superiority of these improvements and show that the BBR method outperforms the compared 

                  



ones by achieving more optimal solutions within less computational time. The BBR method 

can find and verify optimal solutions for all tested instances in 1.0 second on average, and it 

can be regarded as the state-of-the-art methodology for TALBP with the mated-station 

number minimization criterion.  

Future research might develop more dominance rules based on the characteristics of the 

TALBP. As the minimization of the workstation number is also important in industry, it is 

necessary to extend the proposed BBR algorithm to minimize both the mated-station number 

and the workstation number simultaneously. As the considered problem is the basic edition of 

TALBP, it is suggested to utilize the proposed BBR to address other variants of TALBP. As 

current exact methods mainly consider one optimization criterion, it is quite interesting to 

extend the proposed BBR or hybridize it with other metaheuristics to address multi-objective 

TALBP. 
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